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The theory of chromatographic processes has been dealt with in numerous recent 
articles and some excellent reviews of the subject are availablel-6. The treatments 
vary from a phenomenological approach in’the equilibrium theories, which are based 
on the “effective plate” concept, to rate theories, where the approach is kinetic. 
The object of the latter is to elucidate the actual mechanism of the chromatographic 
process and to determine the concentration profile of the elution curve as a function of 
fundamental parameters such as flow rate, feed concentration, partition coefficient, 
solute diffusion coefficient, etc. The treatment along these lines requires the specifi- 
cation of a model and the introduction of some simplifying assumptions such as 
linear sorption isotherms, plug flow of the moving phase, neglect of longitudinal 
diffusion, etc. Some recent contributions in this field are listed in refs. 6-g. 

In the present article a kinetic approach based on a simple physical model of a 
chromatographic column is presented. The model is fairly general and may be applied 
to most of the different chromatographic procedures in use. A detailed treatment will, 
however, be given here only for the case in which the different solutes do not interact 
with each other. It applies best therefore to different types of partition chromatog- 
raphy, such as gel filtration and some forms of gas-liquid chromatography, 

We will start by specifying the model. It is based on a model treatment of diffu- 
sion processes advanced in a recent article by the authorlO. It was shown that diffusion 
problems can be handled by means of a model consisting of a subdivision of space 
into compartments, separated by membranes. In this model all the resistance to 
diffusion is concentrated in the membranes, which thus constitute the resistance 
elements of the model, whereas the compartments constitute the capacity elements. 
The diffusion coefficient for a solute in a medium can be reproduced by choosing 
the proper value for the permeation coefficient of the membranes. This principle 
can be applied to a chromatographic column by representing the moving and station- 
ary phases of the column by compartments, separated by a membrane and visualizing 
them as constituted of two long grooves separated by the membrane. A cross section 
is shown in Fig. I. Owing to the basic assumptions of the model, the concentrations 
in a cross section are uniform within each compartment. The expression for concen- 
tration equilibration for a single solute within a narrow strip of the grooves may then 
be readily derived. Taking also into account the possibility of an unequal partition 
of the solute between the two phases, the following expression is obtained: 
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with 
m=a 

where 
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v’,, v, = volumes per unit membrane area of respective compartments 
Cl, c2 = concentrations of solute in respective com@artments 
a = perineation constant for solute 
Y = solute partition coefficient. 

In addition the following mass conservation relation holds for the solute: 
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ClVl + c2v2 = Cl0 Vl + cs” v2 (3) 

From eqns. (I) and (3) it follows that 
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These relations are now applied to the model of the chromatographic column. 
The column is divided into cells of equal width L and the operation of the column is 
assumed to take place in discontinuous steps of duration T. The procedure of the oper- 
ation is as follows. During the time interval T the solutions on the two sides of the 
membrane in every cell are equilibrated according to eqn. (1). At the end of the step the 
solutions in the moving phase of each cell are instantaneously shifted to the next 

Fig. I. Cross section of the column model. 

cell and the equilibration procedure is repeated. If the velocity of the moving phase 
in the longitudinal direction of the column is v then obviously I = VT. A schematic 
representation of the column operation is shown in Fig. 2. The cells are numbered 
from left to right and the solution is assumed to enter the column from the left side. 
The concentrations in the ith cell at time t are denoted by fit and ygrt for the moving 
and stationary phase respectively. Neglecting for the moment longitudinal diffusion 
and using eqns. (4) and (5) the material balance equations may be written down: 
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Fig. 2. Schematic representation of the column operation. 

From these relations the differential equations for the column operation may 
readily be derived. The spatial variable x is introduced, and since the cell width is VT, 
where v is the velocity of the moving phase, eqns. (6) and (7) may be written 
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Expanding the left members and the exponential terms in the right members 
into power series and rearranging, we get 
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Substituting for m from eqn. (2) and dividing by T, we get for the limit T = o 
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Here the parameter 
It may be shown10 that, 
step, 

a determines the rate of the lateral diffusion in the column. 
if diffusion in the stationary phase is the rate determining 

D2 
a=2- 

v2 
(14.) 

where D3 is the solute diffusion coeficient in the stationary phase. At this stage 
longitudinal diffusion may 
and (13) the concentration 

aiso be taken into account by superposing on eqns. (x2)’ 

changes obtained from the diffusion equation (IS) 

ac= axa (15) 
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Thus, the final equations take the form 

(16) 

(17) 

The same equations may of course also be derived from a continuous-flow model. 
Equations (16) and (17) contain the following fundamental parameters: 
V = velocity of the moving phase 
Y = solute partition coefficient 
D,, Da = diffusion coefficients in the moving and stationary phases respectively 
‘c/1, v2 = volumes per (interphase) area of the moving and stationary phases respec- 
tively. 

All these parameters are in principle determinable. The solution of the differential 
equations thus gives the solute distribution in the column as a function of time and 
position. In the case of a mixture of non-interacting solutes, different values have only 
to be assigned to the parameters y, D, and D, to obtain the distributions of the differ- 
ent solutes, and hence the separation efficiency of the column. However, as analytical 
solution of the differential equations seems impossible, a procedure is presented for 
numerical solution of the problem using the original eqns. (6) and (7). The effect of 
longitudinal diffusion may be considered by adding to the right members of these 
equations the concentration changes due to longitudinal diffusion...Using the diffision- 
model treatment in the longitudinal direction (see Fig. 2) and assuming constant 
diffusion coefficients, the following concentration increments according to eqn. (9) 
in ref. IO are obtained 

where al and cc3 
Noting that the 
diffusion are VT, 

Asat <I, this equation obviously imposes a lower limit on T for longitudinal 
diffusion. The final equations are now obtained from cqns. (6) and (7) and eqns. 
(18) and (19). With the substitutions 

A fit = Q m(ft-1,t - 2 fte + fi +l,d (18) 

A git = * az(ga-1,r - 2 grc + &.1,t) (19) 

are determined by the diffusion coefficients in the respective phase. 
volumes per area of the compartments in the model for longitudinal 
eqn. (Is) in ref. 10, gives 
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fr.+l, t-f.1 = (r - 7) ftt + rgtt + & ocl(fc-1,c - 2 fte + ft41,J (23) 

gi,c+1 = (I - wrc t f gtc + Q aa(gr-1,e - 2 g{t f gr+lJ (24) 

From these equations the distribution of solute in the chromatographic column 
may be obtained. Here, a simplified treatment is considered in which longitudinal 
diffusion is neglected. Thus instead of eqns. (23) and (24) the following are uSed: 

ft+l,t+l = (I - r) frt -I- r grc (2.5) 

gc, c41 = (1 - 6) frt + 6 QlC (26) 

From eqn. (26) we get by recursion 

B&c+1 = (T - t> fsc -I- 43(x - 4) f$, t-1 -/- e[(r - 6) ft, t-a -k .‘. 1 = 

= (= - 4) ftc -I- (1 - &$f& c -_1 -j- (I - 5)E” fi, c -2 + a l l CT - +wfifro (27) 

Insertion of this into eqn. (25) gives 

ftc = (T -7) fi-1, t-1 -I- rl(I -8) f+i, c-2 + rl(I -E)Ef+l,E--5 + 

+ 17(x - 4) P2 ft-1,o (28) 

A matrix ($t~) of order PZ is now def?ned, having its elements determined by eqn. 
(28) with j = E + I:andi,j= x,2**- FL. .With reference to Fig. 2 the following inter- 
pretation of the element fij is obtained. It specifies the concentration in the moving 
phase in the ith cell at the time (j - x)r. The time will always be given as the time 
at the beginning of an equilibration period. Thus, a row of the matrix represents the 
concentration in a particular cell at different times from C = o to C = (PZ - 3~)r and 
a column of the matrix represents the concentration distribution in the chromato- 
graphic column at a particular instance of time. The initial conditions are specified 
by the values ofj$j forj = I, 2,’ l -‘YL and$ll for i = I, 2,. l l vz. The value offip may 
be interpreted as the concentration in the solution that enters the column at the time 
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Fig. 3. Solute distribution in the moving phase of the column. For curve 1, ‘c a z 11~ (i.e. equilibrium 
is established) f‘for curve 2, 7 = ~1,~ (zy, = half-time for, attainment of equilibrium in lateral 

diffusion), 

J. Cirrotnatog., 15 (1964) 488-494 



THEORY OF PARTITION CHROMATOGRAPHY 493 

matrixes of very high orders may be obtained, in which the conditions of continuous 
operation of the column are approached. In the present work a few calculations were 
carried out with hand-operated calculators giving matrixes of the 30th order. The 
results are shown in the form of the last columns, representing the solute distribution 
in the moving phase at the end of the time period considered (t = 30~). They are 
presented diagrammatically in Fig. 3. In the calculations the following initial con- 
ditions and values on the parameters determining the coefficients in eqn. (28) were 
used : 

f 11 = 

Y = 

VJV, = 

rl = 

r = 

I, fig = ftl = 0 for i, i = 2, 3,’ l ‘92. 

I. 

q-” and 1/3 for curve 1 and 2 respectively 
2/3 and s/o for curve 1 and 2 respectively. 

(i - ~)r and that of for as the concentration in the ith cell at t = o. Specifying the 
coefficients in eqn. (28) and the initial values fi,~ and fii and assigning to all be with 
zero or negative indices the value zero, all the elements &tj in the matrix may be 
calculated from eqn. (28). : 

The calculations may conveniently be carried out with digital computers. Then 

It should be noted that owing to the basic assumptions in the diffusion model 
(uniform concentrations in the compartments separated by the membrane) the 
geometry of the column filling does not enter into the treatment explicitly, but is taken 
into account by the ratio VJV2. It is easy to show that where the stationary phase 
consists of a filling of tight-packed spherical beads the ratio 

Vl 

vz 
3 dZ 

r=----_ 
?c 

w 0.350. 

Thus, in the present calculations a rather loosely packed column is considered. 
The results shown in Fig. 3 demonstrate the influence of lateral diffusion (local 

non-equilibrium) on the chromatographic process. It has a negative effect on the 
separation efficiency, it causes the broadening of a peak but affects only slightly its 
translational velocity. Thus, in general it is not possible to separate substances’in a 
column on the basis of differences in diffusion coefficients. Only if one of the sub: 
stances has a very small diffusion coefficient may it be separated from other substances 
with considerably higher diffusion coefficients. Thus it may be concluded that in 
partition chromatography separation is mainly due to differences in partition coeffi- 
cients. The present calculations can of course only give a superficial picture of the 
possibilities of the method and further work, including more detailed computations 
with the aid of digital computers is in progress. 

Finally some of the approximations made in the present treatment are considered. 
In the first place longitudinal diffusion has been neglected. The latter is most pro- 
nounced in the moving phase and causes the broadening of a chromatographic peak, 
but leaves its translational velocity unaffected. Therefore from the present calculations 
the optimal performance of an ideal column is obtained. 

The diffusion model used in this treatment may be considered to give a first 
order approximation of the diffusion process (e.g. diffusion into a spherical particle 
(radius = r) is represented by an exponential function with the half-time Tl/n = 
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0.039 r2/D, in close agreement with VERMEULEN’S~~ approximate formula +r1/p = 
0.030 r2/D) . Higher order approximations could be obtained by a repeated application 
of the diffusion model, e.g. a spherical particle could be considered to consist of 
several concentric zones, each representing an element of the diffusion model. How- 
ever, this would considerably complicate the numerical calculations and it is felt 
that the first order approximation is sufficient to bring out the essential features of 
the lateral diffusion effect. 

The discreet operation of the column also introduced an approximation. However, 
by decreasing the length of the time period T, conditions for the continuous operation 
of a column are approached. The magnitude of the deviation from the conditions 
for continuous operation may be estimated from calculations with different T values. 

SUMMARY 

A rate theory for partition chromatography, based on a simple physical model, is 
presented. It has the object of determining the concentration profile of an elution 
curve from fundamental parameters, characteristic of the solute and the column 
operation. A method for a numerical solution of the problem with the aid of digital 
computers is also given. 
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